If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9n+3n^2+4.75=0
a = 3; b = 9; c = +4.75;
Δ = b2-4ac
Δ = 92-4·3·4.75
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-2\sqrt{6}}{2*3}=\frac{-9-2\sqrt{6}}{6} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+2\sqrt{6}}{2*3}=\frac{-9+2\sqrt{6}}{6} $
| 321x+526=926+21x | | 625x-751=650x-766 | | 2856x+753=1931x+1400,5 | | 2x+3(x-1)=5/2 | | 5-(2x-3)=1 | | 6-25s-15s-13=25s+23 | | 5(-7y-1)/y=-70 | | y*4-22=8 | | p/6-24=24 | | 102-2x=-10 | | 8^x=32^2x-12 | | h/14-25=19 | | q^2+2Q-40Q=0 | | 6•1y-1-3y=998 | | s*10=7 | | (12x+9)/(x+1)=12 | | 5x4-4=4+4+3 | | |8x+4/5|=15 | | 4x+5+x=15 | | X*y/2=50 | | (7x+5)(6x-4)=0 | | X.y=50 | | (7x-1)(x-3=0 | | 4*(2x-9)=20 | | 4x+3=-11+2x | | -8=4(x-1 | | 0=(t+0.75)(6-1.5t) | | 35=5(x+9 | | 4y+3y+1=57 | | 2(x-7)-3x=-(x-3)-17 | | 4x=x+84 | | 4x+3/15-2x-3/9=6x+4/6 |